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Abstract

Background: Understanding the forces that shaped Neotropical diversity is central issue to explain tropical
biodiversity and inform conservation action; yet few studies have examined large, widespread species. Lowland
tapir (Tapirus terrrestris, Perissodactyla, Tapiridae) is the largest Neotropical herbivore whose ancestors arrived in
South America during the Great American Biotic Interchange. A Pleistocene diversification is inferred for the genus
Tapirus from the fossil record, but only two species survived the Pleistocene megafauna extinction. Here, we
investigate the history of lowland tapir as revealed by variation at the mitochondrial gene Cytochrome b, compare
it to the fossil data, and explore mechanisms that could have shaped the observed structure of current
populations.

Results: Separate methodological approaches found mutually exclusive divergence times for lowland tapir, either
in the late or in the early Pleistocene, although a late Pleistocene divergence is more in tune with the fossil record.
Bayesian analysis favored mountain tapir (T. pinchaque) paraphyly in relation to lowland tapir over reciprocal
monophyly, corroborating the inferences from the fossil data these species are sister taxa. A coalescent-based
analysis rejected a null hypothesis of allopatric divergence, suggesting a complex history. Based on the geographic
distribution of haplotypes we propose (i) a central role for western Amazonia in tapir diversification, with a key role
of the ecological gradient along the transition between Andean subcloud forests and Amazon lowland forest, and
(ii) that the Amazon river acted as an barrier to gene flow. Finally, the branching patterns and estimates based on
nucleotide diversity indicate a population expansion after the Last Glacial Maximum.

Conclusions: This study is the first examining lowland tapir phylogeography. Climatic events at the end of the
Pleistocene, parapatric speciation, divergence along the Andean foothill, and role of the Amazon river, have
similarly shaped the history of other taxa. Nevertheless further work with additional samples and loci is needed to
improve our initial assessment. From a conservation perspective, we did not find a correspondence between
genetic structure in lowland tapir and ecogeographic regions proposed to define conservation priorities in the
Neotropics. This discrepancy sheds doubt into this scheme’s ability to generate effective conservation planning for
vagile species.
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Background
A central debate in Neotropical biogeography concerns
the importance of Pleistocene climatic and geological
events in generating current species richness [1-4].
Molecular evidence across several taxa supports a sce-
nario where most of the observed divergence and spe-
ciation events occurred prior to the Pleistocene [5], and
are associated with paleogeographic events of the late
Miocene [6,7]. More recent studies, however, suggest a
more significant role to the climatic cycles of the Pleis-
tocene than what was previously hypothesized [4]. In
this paper we contribute to this debate by exploring the
phylogeography and population history of the largest
terrestrial Amazonian mammal, the lowland tapir
(Tapirus terrestris) whose genus has a history in South
America confined to the Pleistocene.
Tapirs (Perissodactyla, Tapiridae, Tapirus) were part

of a community of large Neotropical browsers that lar-
gely disappeared at the end of the Pleistocene [8-10]. As
the last representative of this community, tapirs are key
actors in forest dynamics as functionally important seed
dispersers and predators [11,12], often being called for-
est “gardeners” or “architects” [13]. The genus Tapirus
has four extant species, the Malay tapir (T. indicus) in
South Asia, and three Neotropical species: the mountain
tapir (T. pinchaque) in the Andes’ central mountains,
the Baird’s tapir (T. bairdii) in Central America; and the
lowland tapir (T. terrestris) occupying the widest distri-
bution, from Venezuela to northern Argentina, and
from the Brazilian Atlantic forest to the Ecuadorian
sub-Andean foothills, and variety of habitats (e.g. moist
and swamp forests, dry and moist woodlands, savannas,
and a wide range of wetlands) [14].
Current knowledge on lowland tapir evolutionary his-

tory is based on a well-studied fossil record for the south-
ern part of its range [15-17] but a more sparsely explored
fossil record in the Amazon region. Moreover, only a sin-
gle study focused on estimating dates of Tapirus diver-
gence using sequence variation at the mitochondrial
cytochrome oxidase II gene [18]. Inferences from the fos-
sil record indicate that the genus became widespread in
the Nearctic by the early Pleistocene [8], and migrated
into South America between 3.1 to 2.7 million years
before present (My BP) during the Great American Biotic
Interchange [19-21]. The earliest South American spe-
cies, T. merriami, is recorded in the Marplatan South
American Land Mammal Age (SALMA) in the Pliocene
[22]. Then during the Ensenadan SALMA, a number of
other Tapirus species co-occured in the fossil record,
suggesting a wave of diversification within South Ameri-
can [15,17,23-26]. This pattern follows into the Lujanian
SALMA, when the genus likely experienced a second
period of diversification, with several species occurring

sympatrically: T. olivaresi, T. cristatellus, T. mesopotamicus,
T. rioplatensis, T. tarijensis [27]. The earliest fossil
records of T. terrestris are reported at this period
(80-130 Ky BP), in the Mesopotamian region of north-
ern Argentina [16,24,28,29]. Other records are more
recent, in southwestern Brazilian Amazonia (30-45 Ky
BP [15]) and in northern Uruguay (6-15 Ky BP [17]).
Morphological data suggest that T. terrestris,

T. pinchaque, and T. mesopotamicus (extinct) form a
monophyletic group, and T. bairdii forms a monophy-
letic group with North American Tapirus extinct spe-
cies [24]. Thus, the fossil record in combination with
morphological analyses indicate that Tapirus diversi-
fied within South America during the past 2.5 My BP,
similarly to other recently arrived North American
taxa [21], with T. terrestris likely emerging in the late
Pleistocene. Two other inferences can be made from
the fossil record. First, as in other lowland Amazonia
species [e.g., [30]], the lowland tapir’s origin of diversi-
fication and spread is likely western Amazonia, where
fossils of several distinct Tapirus species (of which
only T. terrestris remains), are purported to have
occurred in sympatry in the past 100 Ky BP [15], indi-
cating this region’s important role in Neotropical
diversification during the mid to late Pleistocene.
Second, the earliest fossil records of lowland tapir are
reported for the late Pleistocene in the southern range
of the genus’ current distribution [19] indicating the
range expansion of the lowland tapir was rapid.
Several mechanisms of diversification have been pro-

posed for the Pleistocene [31], leading to either allopatric
or parapatric divergence. The Refuge hypothesis proposes
that a series of alternating climatic changes caused by
Croll-Milankovitch cycles combined with the Andes and
other higher elevation terrains to allow for the formation
of humid forest refugia interspersed by areas of dry forest
and open grasslands. Within the refuges, lowland forest
dwelling species remained isolated, creating an opportu-
nity for allopatric speciation, evidenced in current centers
of species endemism [32-34]. Such refuges during times
of climate cooling have been shown to account for diver-
gence in other parts of the world [e.g., [35]], and the
hypothesis is one of the most commonly tested in bio-
geographic studies in Amazonia [e.g., in monkeys:
[36,37]]. However, the existence of rainforest refugia in
Amazonia is controversial [38,39], and centers of ende-
mism, do not match well across taxa [40]. In addition,
allopatric divergence in rainforest refugia does not seem
a likely mechanism to explain divergence of the lowland
tapir as the species’ distribution ranges across South
America [13] including large areas of savanna [31]. Allo-
patric divergence within Amazonia has also been
hypothesized to occur as a result of restricted gene flow
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across large rivers within the Amazon basin. This “river-
barrier” model predicts independent lineages occurring
on opposite banks as a result of restricted gene flow
[41,42]. Geological data suggest that the Amazon River
attained its current flow during the late Pleistocene [43],
and molecular evidence proposes that the Amazon River
has been a significant barrier for several taxa, including
monkeys [37] and carnivores [44,45]. Under this scenario
the river would be expected to separate independent low-
land tapir lineages on either side of its banks.
Finally, it is possible that divergence occurred in para-

patry rather than allopatry [5]. The gradient hypothesis
proposes that divergence can occur across steep envir-
onmental gradients without physical barriers to gene
flow and predicts that sister lineages occur in adjacent
habitats [46]. In Amazonia, specific tests have rejected
the gradient hypothesis in rodents [47] and in birds
[48]. Nevertheless, the Andean foothills provide the
sharp change in ecotone assumed by the gradient
hypothesis, a feature that has been used to explain why
the region is a hotspot for diversification in the absence
of geographic barriers [49]. In the case of the Tapirus
genus, the occurrence of mountain and lowland tapirs
in adjacent habitats along the Andes elevational gradient
[50] indicate that a gradient model of diversification is
possible [51]. To test this hypothesis, it is necessary to
demonstrate that these species are sister taxa [47].
Here, we examined genetic variation at Cytochrome b

(cytb) to investigate lowland tapir Tapirus terrestris
demographic and population history. We examine how
molecular information regarding the early history of the
genus can explain variability in the fossil data and con-
tribute to the understanding of diversification processes
in the Neotropics. The lowland tapir is also an increas-
ingly threatened species [52], with a distribution that
includes several ecogeographic units commonly used to
identify priority areas for biodiversity conservation [53].
To date, it is unclear how well this conservation scheme
reflects tapir history and the likely success of conserva-
tion efforts for different tapir lineages. In this regard, we
apply coalescent approaches to: (i) determine the most
likely timing of divergence among lowland tapir cytb
lineages; (ii) determine population structure of lowland
tapir cytb and explore the paleogeographic events that
may have contributed to this structure; (iii) investigate
the species’ demographic history; and (iv) examine how
the inferred evolutionary history is currently reflected in
areas of conservation priority.

Results
Sequence variation, phylogenic relationships and dating
divergence
A total of 1,068 unambiguous bases of the cytb gene
were sequenced from three mountain tapirs from the

Central Andes, Colombia, and 45 lowland tapirs widely
sampled across the species distribution range (Figure 1).
In lowland tapir sequences, we observed 64 polymorphic
sites (61 transitions and 3 transversions), and a bias
against guanidine (C: 28.59%, T: 28.66%, A: 29.79%, G:
12.97%). Thirty-five haplotypes were identified with a
mean pairwise difference of 0.995%, Hd of 0.988 ± 0.007,
and π of 0.009325 ± 0.004825. Haplotypes Hte 2 and
Hte 13 were found at more than one sampling site:
French Guiana and Bolivia, and Peru and Colombia/
Brazil border, respectively (Table 1). Finally, two poly-
morphic sites (defining two haplotypes) were observed
among the three mountain tapir sequences.
The Median Joining haplotype network (Figure 2), and

the gene genealogies inferred by maximum parsimony,
maximum likelihood, and Bayesian coalescent approach
(Figure 3) consistently inferred a four-clade structure. In
the Bayesian approach, all four clades had posterior
probability values >0.9, and all clades are represented in
the strict consensus trees derived from maximum parsi-
mony and maximum likelihood inferences. Clade I
groups haplotypes found in western Amazonia: south-
east Peruvian Amazon, Ecuadorian Amazon, Colombian
Amazon and western Brazilian Amazon. Clade II, similar
to clade I, includes haplotypes sampled in the Ecuador-
ian and Colombian Amazon, eastern Peru, and eastern
Colombia. Clade III clusters haplotypes from north
Amazonia: northern Atlantic Colombia, Venezuelan and
Colombian llanos and French Guiana. Clade IV includes
all haplotypes found from south Amazonia including
Brazil (except western Amazonia), Argentina, and
Bolivia, and some from eastern Peruvian Amazon. Clade
IV had the widest geographic distribution, with haplo-
types occurring in three of our four defined geographic
regions (see Methods). Finally, there was little support
for reciprocal monophyly of lowland and mountain
tapirs. In the haplotype network, the mountain tapir
haplotypes grouped with clade II, and in the Bayesian
analyses, the hypothesis that mountain tapirs have a
basal position had a posterior probability of 0.26.
Using a Bayesian inference framework, we took two

approaches to measure the time of divergence among
the four identified clades. In the first approach we used
fossil data to calibrate the molecular clock with the tim-
ing of the Rhinocerontidae and Tapiridae split, and a
well know split within Rhinocerontidae. The inferred
mean substitution rate was 5.6 × 10-3 substitutions/site/
million years, leading to the inference that divergence
between the Asian and the two South American tapir
species occurred earlier than the Pliocene (median 19.26
My BP, 95% Highest Posterior Probability: 8.4-35.1 My
BP). All clades within lowland tapir are estimated to
have diverged some time between the mid-Pliocene and
the mid-Pleistocene. In particular, clade I is estimated to
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have diverged between 0.8 and 4.0 My BP (median =
2.12 My BP, 95%: 0.8-4.0), followed by the split between
clade II and clade III (median = 1.5 My BP, 95% HPD:
0.8-4.0), and clade IV between 0.6 and 4.3 My BP (med-
ian = 2.0 My BP, 95% HPD: 0.6-4.3). Within the four
clades, only a few subclades were strongly supported,
with divergence events ranging from mid to late Pleisto-
cene (95% HPD: 0.2-1.4 My BP). In the second analysis,
we set a strong prior on the mutation rate based on
estimates for Perissodactyl cytb mutation rates [54]. This
approach inferred a mean substitution rate of 2.5×10-2

substitutions/site/million years (95% HPD: 1.6-3.5 × 10-2),
which leads to an estimate of tMRCA of lowland tapir
in the mid to late Pleistocene (median = 0.33 My BP,
95% HPD: 0.19-0.57 My BP). Under this scenario, the
split between clades I and II occurred before the start
of the last Glacial Maximum (LGM) (medium = 0.25
My BP, 95% HPD: 0.1-0.4); while clades III and IV are
estimated to have emerged more recently, possibly

during the LGM (median = 0.16 My BP, 95% HPD:
0.08-0.14 My BP).

Population structure and diversity
We tested the partitioning of genetic variation across three
different sampling groupings according to: (1) the four
phylogenetic clades, as outlined above; (2) four geographic
regions: the Andean foothills, western Amazonia, south
Amazonia and north Amazonia, which largely mirror the
geographic distribution of haplotypes within clades; and,
(3) ecoregions (Figure 1). Using AMOVA, we found signif-
icant structuring of genetic variation for all three hypoth-
eses of population structuring (Table 2). In the first
grouping, 67.9% of the observed variation was found
among groups (FCT= 0.68, p ≤ 0.0001), and resulted in sig-
nificant (p ≤ 0.001) population differentiation across all
pairwise comparisons with indices ranging from 0.55
(clade III vs. clade IV) to 0.66 (clade I vs. clade IV; and
clade I vs. clade II). Gene and nucleotide diversities varied
among these four clades, with lower nucleotide diversity
values recorded for clades III and IV (Table 3). Grouping
samples by the four geographic regions found 25.53% of
the observed variation among groups (FCT = 0.255, p ≤
0.0001) (Table 2). Indices of nucleotide diversity were
greatest in the two groups from the western Amazonia
region: Andean foothills and western Amazonia (Table 3).
The south Amazonia group had significant pairwise popu-
lation differentiation indices (p < 0.001) to all other
groups, and the same was observed between north
Amazonia and Andean foothills groups. Finally, similar
levels of among-group variation to those recorded for
geographic grouping were observed when partitioning by
ecoregions (FCT = 0.246, p ≤ 0.001) (Table 2). Nucleotide
diversity estimates also varied among ecoregion units, with
the highest diversity found in the rainforest ecoregion
(Table 3). In contrast, although low levels of genetic struc-
ture were observed among most of sampling sites, popula-
tions from the Argentinean dry tropical forest and from
the Venezuelan llanos were significantly isolated from
populations in other ecoregions (Table 3).

Demographic history
We explored lowland tapir demographic history across
the same three different groupings of samples: (1) phylo-
genetic; (2) geographic, and (3) ecogeographic. In the
phylogenetic grouping, we found significant negative
values for Fu’s Fs (Fs = -11.26, p ≤ 0.0001) and Tajima’s
D (D = -1.55, p ≤ 0.05) for clade IV, indicating popula-
tion expansion (Table 3). This was mirrored by the
inference by Bayesian skyline plot (BSP) of a two-fold
population size increase occurring 15-20 Ky BP in
this clade (data not shown). In clade I, only Fu’s Fs
(Fs = -3.01, p ≤ 0.05) was significantly negative. In the
geographic grouping, we observed significant negative

Figure 1 Lowland tapir (Tapirus terrestris) and mountain tapir
(T. pinchaque) sampling sites. Indicated are sample size per site,
and ecogeographic regions for each sampling site [13]. Numbers
are referenced in Table 1.
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values for Fu’s Fs test (Fs = -4.56, p = 0.001) and the
Tajima’s D (D = -1.61, p ≤ 0.01) only for the south
Amazonia group. In the ecoregional grouping, signifi-
cant negative values were observed with Fu’s Fs test
only, in the Upper Amazon (Fs = -3.92, p = 0.05) and in
the southern dry forests (Fs = -2.37, p = 0.01).

Phylogeography
SAMOVA was used to identify maximally differentiated
genetic groupings and identify potential phylogeographic
breaks. At K = 2, the sampling sites from northwest of
the continent (Figure 1: sites 2, 4, 6, and 7), were grouped
separately from all other sampling sites (FCT = 0.24,

Table 1 Sample identification, geographic origin and ecogeographic unit [13], and associated haplotypes with their
respective frequencies

Sample Origin* Geographic group Ecogeographic unit Haplotype Frequency

Tapirus terrestris

TG01, TG06, TG29 French Guiana [1] North Amazon North-East Amazon rainforest Hte 1 3/45

TG28 French Guiana [1] North Amazon North-East Amazon rainforest Hte 2 2/45

TG5 French Guiana [1] North Amazon North-East Amazon rainforest Hte 3 1/45

TG24 French Guiana [1] North Amazon North-East Amazon rainforest Hte 7 1/45

TC54 East Colombia [2] North Amazon North-East Amazon rainforest Hte 11 1/45

TC186 East Colombia [2] North Amazon North-East Amazon rainforest Hte 19 1/45

TB01 Brazil, north [3] North Amazon North-East Amazon rainforest Hte 14 1/45

TB02 Brazil, north [3] North Amazon North-East Amazon rainforest Hte 15 1/45

TE17, TE22 Ecuador [4] Andean Foothill Upper Amazon rainforest Hte 4 2/45

TE14 Ecuador [4] Andean Foothill Upper Amazon rainforest Hte 5 1/45

TE19 Ecuador [4] Andean Foothill Upper Amazon rainforest Hte 6 1/45

TE20 Ecuador [4] Andean Foothill Upper Amazon rainforest Hte 8 1/45

TE16 Ecuador [4] Andean Foothill Upper Amazon rainforest Hte 9 1/45

TP104 Peru, south-east [5] West Amazon Upper Amazon rainforest Hte 12 1/45

TP94 Peru, south-east [5] West Amazon Upper Amazon rainforest Hte 16 1/45

TP14 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 13 2/45

TP4 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 23 1/45

TP12, TP13 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 24 2/45

TP11 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 25 1/45

TP9 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 26 1/45

TP6, TP7 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 27 2/45

TP5, TP2 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 28 2/45

TP3 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 29 1/45

TP1 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 30 1/45

TP10 Peru, east [6] Andean Foothill Upper Amazon rainforest Hte 31 1/45

TC88 Colombia/Brazil frontier [7] West Amazon Upper Amazon rainforest Hte 18 1/45

TC68 Colombia/Brazil frontier [7] West Amazon Upper Amazon rainforest Hte 20 1/45

TB69 Colombia/Brazil frontier [7] West Amazon Upper Amazon rainforest Hte 13 2/45

TV95, TV48, TV46 Venezuela [8] North Amazon Llanos Hte 10 3/45

TBo183 Bolivia [9] South Amazon “Pastizal” herbaceous habitat Hte 2 2/45

TBo85 Bolivia [9] South Amazon “Pastizal” herbaceous habitat Hte 22 1/45

TC100 Colombia, west [10] West Amazon Choco Darien rainforest Hte 17 1/45

TB29 Brazil, south of the Amazon mouth [11] South Amazon South East Amazon rainforest Hte 21 1/45

TA10 Argentina [12] South Amazon Dry tropical forest Hte 32 1/45

TA11 Argentina [12] South Amazon Dry tropical forest Hte 33 1/45

TA12 Argentina [12] South Amazon Dry tropical forest Hte 34 1/45

TA13 Argentina [12] South Amazon Dry tropical forest Hte 35 1/45

Tapirus pinchaque

TPI1, TPI2 Colombia [T. pi] Hpi 1 2/3

TPI4 Colombia [T. pi] Hpi 2 1/3

* refers to [site number] on Figure 1.
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p ≤ 0.0001). At K = 3, the groupings were (i) western
samples: Colombian Amazon (sites 2 and 7), Western
Brazilian Amazon (site 3), Ecuadorian Amazon (site 4),
Peruvian Amazon (site 6), (ii) northern samples: French
Guiana (site 1), Venezuelan Llanos (site 8), and western
Colombia (site 10); and (iii) southern samples: Bolivia
(site 9), southern Peru (site 5), Argentina (site 12), and

Brazil (site 11) (FCT = 0.29, p ≤ 0.0001). At K = 4, the
French Guiana sampling site (site 1) is grouped separately
from the two other northern sampling sites (sites 8 and
10; FCT = 0.32, p ≤ 0.0001). At K = 5 to 8, sampling sites
from the Upper Amazon region are separated according
to river basin separations (Napo, Amazon, Ucayali and
Marañón rivers). At K > 8, Bolivian (site 9) and Argenti-
nean (site 12) samples are grouped separately.
To test the different proposed biogeographic hypoth-

eses we compared a null model of allopatric divergence
among the four geographic areas with colonization
models based on different effects of gradient and river-
barrier mechanisms of divergence (Figure 4). The recon-
structed gene genealogy had an observed Slatkin and
Maddison (1989) s = 4. For both alternative hypotheses,
the null model was rejected at a p ≤ 0.01 under a wide
variety of generation steps and effective population sizes
(Table 4).

Discussion
The role of Quaternary climatic and geological events in
promoting divergence and increasing rates of speciation
is the subject of intense debate [1-3]. In the Neotropics,
the phylogeography and population history of mammals
have been investigated in several taxa, including bats
[55], carnivores [44,45,56,57], primates [36,37,58],
rodents, and marsupials [59-61]. Here, we aimed to con-
tribute to this discussion by exploring the evolutionary
history, and population genetic structure and dynamics
of the lowland tapir, a habitat generalist and widely dis-
persed species whose ancestors likely arrived in the con-
tinent during the early Quaternary [19]. In doing so, we
specifically attempted to estimate time of divergence
and identify climatic and geological events that poten-
tially contributed to shaping lowland tapir biogeography,
and aimed to provide data relevant for the conservation
of this increasingly threatened species.

Estimating divergence time among populations
On average, mitochondrial DNA mutates at a faster rate
than nuclear DNA [62], resulting in it becoming a con-
venient tool for reconstructing the recent history of
populations and species [5]. We applied both the novel
approach of Ho and colleagues [63] and the more tradi-
tional method based on dating interspecific nodes using
fossil data [64] to estimate the mutation rate, and thus
the timing of divergence of South American tapir clades.
Mutation rate estimates were an order of magnitude
higher with the former than with the latter method, and
resulted in significantly different mean estimates of
tMRCA, as seen by the lack of overlap in tree height
95% HPD (0.1 − 0.4 and 0.8 − 4.0 My BP, respectively).
Such differences have been reported and discussed else-
where [65-67] and are generally attributed to differences

Figure 2 Minimum spanning network of lowland and mountain
tapirs mtDNA Cytochrome b haplotypes.

Figure 3 Bayesian phylogenetic tree and divergence dates,
using Ho et al.’s method [63]. Tip labels refer to haplotype
identification number and origin (Table 1). Values above branch
nodes refer to posterior probability/time of divergence in My BP.
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in intra- and interspecific rates of mutation [64,68].
Consequently, we are not able to a priori judge the rela-
tive importance of climatic or geological events happen-
ing in the late Pleistocene versus early Pleistocene in
shaping lowland tapir history.
In order to decide which estimate is more accurate,

we would need to test the hypothesis that intra- and
interspecific mutation rates have converged [68]. In the
case that convergence has occurred, applying fossil data
to inform the time of divergence of interspecific tree
nodes is expected to result in accurate estimates of the
mutation rate. If convergence has not occurred, then
fossil calibration is expected to significantly underesti-
mate the mutation rate [63] and the method of Ho and
colleagues [63] is then expected to result in more
accurate estimates of the mutation rate. Unfortunately,
without ancient DNA samples to specifically measure
the substitution rate, it is not possible to test the

convergence hypothesis. Nevertheless, we believe that
other lines of evidence indicate that convergence
between intra- and interspecific mutation rates has not
occurred. In particular, it has been argued that intra-
and interspecific rates of mutation in vertebrates should
converge within 2 My of two lineages becoming sepa-
rated [68], setting a maximum time for convergence to
occur. It has also been demonstrated for Adélie pen-
guins, a species with similar generation time to lowland
tapir, that convergence of intra- and interspecific rates
has not been reached after 44 Ky of two lineages
becoming separated [69], thus setting a minimum age of
separation before convergence is expected to occur.
An examination of the data available for lowland

tapirs contained within the above period highlights an
unexplained gap between previously published molecu-
lar data and fossil evidences. Previous molecular work
estimated that lowland tapirs emerged in the early

Table 2 Pairwise F-statistics among samples grouped according to the phylogenetic clades, the geographic regions,
and the ecogeographic regions

Phylogenetic clades

Clade I Clade II Clade III Clade IV

Clade I - 0.68 0.72 0.72

Clade II p < 0.001 - 0.64 0.69

Clade III p < 0.001 p < 0.001 - 0.55

Clade IV p < 0.0001 p < 0.001 p < 0.001 -

Geographic regions

western Amazonia Andean foothills north
Amazonia

south
Amazonia

western Amazonia - 0.08 0.05 0.27

Andean foothills ns - 0.27 0.34

north Amazonia ns p < 0.001 - 0.25

south Amazonia p < 0.01 p < 0.01 p < 0.01 -

Ecogeographic
regions

North-East Amazon
rainforest

“Pastizal”
herbaceous habitat

Llanos Choco
Darien
rainforest

South East Amazon
rainforest

Upper Amazon
rainforest

Dry tropical
forest

North-East Amazon
rainforest

- 0.09 0.22 -0.36 0.13 0.23 0.19

“Pastizal” herbaceous
habitat

ns - 0.80 0.33 0.2 0.23 0.15

Llanos p = 0.01 ns - 1.0 1.0 0.31 0.84

Choco Darien
rainforest

ns ns ns - 1.0 -0.02 0.68

South East Amazon
rainforest

ns ns ns ns - 0.6 0.60

Upper Amazon
rainforest

p = 0.001 p = 0.05 p = 0.002 ns ns - 0.29

Dry tropical forest p = 0.05 ns p = 0.02 ns ns p = 0.003 -

Above diagonal: Fixation index (Kimura 2-parameters). Below diagonal: associated p-values.
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Pleistocene, soon after their ancestors crossed the Pana-
mana Isthumus [18], which would suggest that conver-
gence between mutation rates has likely occurred.
However, an examination of the current fossil record
seems inconsistent with this observation. The fossil
record includes a number of tapir species described for
the period ca. 2 My BP throughout South America,
particularly in Argentina and Uruguay, but none are
classified as T. terrestris [15,24]. Instead, the earliest
unambiguous fossil described as T. terrestris is dated
between 80-88 Ky BP [15,24]. This means there is an
almost 2 My gap between the earliest described lowland
tapir fossil and the time of emergence of lowland tapir
previously estimated [18].
The observed incongruence could be either due to too

sparsely studied fossil record, although this is not likely
due to the wide distribution of tapirs and the extensive
paleontological studies [14-17,19,23-29,70], or, to a large
previous overestimate of the age of lowland tapir. This
later alternative is supported by the similarity of diver-
gence estimates of this study with those of Neotropical
carnivores whose ancestors also arrived during the
Great American Biotic Interchange [45,57,71]. Thus, it
seems more parsimonious to accept that the ancestor to
modern lowland tapirs arose around 0.19 and 0.57 My
BP (median = 0.35 My BP; 95% HPD 0.19-0.57 My BP),
as estimated without calibration of an external node.
This would place greater importance on climatic and/or

geological events towards the end of the Pleistocene
in driving Neotropical diversity than previously
proposed [18].
Our conclusions, nonetheless, are based solely on one

mitochondrial gene and relatively small sample size, and
thus are subjected to large coalescent and sampling var-
iance. Nevertheless, our data suggest novel hypotheses
about the history of lowland tapir, and therefore, the
potential mechanisms acting to shape Neotropical diver-
sity, which can be further tested using multiple nuclear
genes and additional samples.

Lowland tapir biogeography
Our statistical phylogeography analyses allowed us to
reject a null model of allopatric divergence across four
major biogeographic regions of the Amazon, as sug-
gested for other taxa [30]. However, it did not distin-
guish between the two alternative hypotheses of
population biogeography (Figure 4). Sampling multiple
nuclear genes across additional loci will allow for more
accurate estimates of the species’ tree and possibly dis-
tinguish between the hypotheses. Nevertheless, the
rejection of the null hypothesis suggests that lowland
tapir history may be complex, and potentially includes
separate colonization and population expansion events.
Phylogenetic reconstruction inferred two deeply diver-

gent lowland tapir clades in western Amazonia (clades I
and II), with mountain tapirs diverging from one of

Table 3 Genetic diversity estimates and deviation from equilibrium for each of three samples groupings: phylogenetic
clades, geographic regions, and ecogeographic units

Grouping (sample size) Haplotype diversity (Hd) Nucleotide diversity (π) Tajima’s D and Fu’s F, and associated p values

Phylogenetic clades*

Clade I (n = 14) 0.956 +/- 0.038 0.004 +/- 0.002 D = -0.94 (ns)/F = -3.01 (p = 0.05)

Clade II (n = 4) 1.000 +/- 0.177 0.006 +/- 0.004 D = -0.37 (ns)/F = -0.12 (ns)

Clade III (n = 12) 0.894 +/- 0.063 0.003 +/- 0.002 D = 0.57 (ns)/F = -1.33 (ns)

Clade IV (n = 15) 0.991 +/- 0.028 0.003 +/- 0.002 D = -1.55 (p = 0.05)/F = -11.26 (p = 0.0001)

Geographic regions

western Amazonia (n = 6) 1.000 +/- 0.096 0.010 +/- 0.002 D = -0.87 (ns)/F = -0.77 (ns)

Andean Foothill (n = 19) 0.976 +/- 0.023 0.009 +/- 0.001 D = -0.05 (ns)/F = -3.32 (ns)

north Amazonia (n = 13) 0.923 +/- 0.057 0.006 +/- 0.0005 D = -1.00 (ns)/F = -0.81 (ns)

south Amazonia (n = 7) 1.000 +/- 0.006 0.002 +/- 0.0005 D = -1.61 (p = 0.01)/F = -4.56 (p = 0.001)

Eco-geographic regions

North-East Amazon rainforest (n = 10) 0.933 +/- 0.077 0.007 +/- 0.004 D = -0.95 (ns)/F = -0.91 (ns)

“Pastizal” herbaceous habitat (n = 2) 1.000 +/- 0.500 0.004 +/- 0.004 -

Llanos (n = 3) 0.000 0.000 -

Choco Darien rainforest (n = 1) - 0.000 -

South East Amazon rainforest (n = 1) - 0.000 -

Upper Amazon rainforest (n = 22) 0.978 +/- 0.189 0.009 +/- 0.005 D = -0.58 (ns)/F = -3.92 (p = 0.05)

Dry tropical forest (n = 4) 1.000 +/- 0.177 0.001 +/- 0.001 D = -0.75 (ns)/F = -2.37 (p = 0.01)

*Number refers to Figures 2 & 3.
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these lineages. The role of western Amazonia in lowland
tapir history has remained a mystery largely because of
the paucity of described fossils for the region. A recent
report characterized at least three species of tapir occur-
ring in sympatry in the Acre and Rondônia region [15],
which led to the hypothesis that the region is a center
of origin for tapirs [24]. Our phylogeographic analysis,

along with the observation of high genetic diversity in
this region (Table 3), supports this scenario, suggesting
a similar history as that reported in primates [37,58],
carnivores [56], and rodents [72], and adds to reports
asserting that western Amazonia has played an impor-
tant role in divergence and speciation in the Neotropics
[32,49,73].

Figure 4 Phylogeographical hypotheses: (i) the null hypothesis of allopatric divergence within the four main geographic regions (haplotypes
grouped by sampling site location irrespective of recovered phylogenetic relationship); and two alternative hypotheses: (ii) divergence between
clades I and II (as identified from phylogenetic relationships), separating lowland western Amazonia (clade II) from Andean foothills (clade I),
followed by divergence of clades III and IV from clade II, leading to the colonization of regions north and south of the Amazon river,
respectively; and, (iii) split from a lowland western Amazonia ancestral population leading to the colonization of regions north and south of the
Amazon river, followed by a later split of lowland western Amazonia and Andean foothills populations.

de Thoisy et al. BMC Evolutionary Biology 2010, 10:278
http://www.biomedcentral.com/1471-2148/10/278

Page 9 of 16



What has led the western Amazon to be a region of
high diversity is still unclear, and will likely only be elu-
cidated with additional data on the region’s geology.
The lack of obvious geographical barriers undermines
hypotheses of allopatric divergence to explain the
observed structure and diversification in western Ama-
zonia [31]. An alternative hypothesis is that the altitudi-
nal gradient of the Andean foothills along with
Pleistocene glacial cycles [51,74] has lead to parapatric
divergence among tapir lineages, a model of divergence
also proposed for other taxa in western Amazonia and
Andean Foothills [e.g., [30]]. At the surface, this hypoth-
esis has support from the adjacent distributions of
mountain and lowland tapirs along an elevational gradi-
ent from lowland forests to sub-tropical montane habi-
tats [46]. Here, Bayesian analysis indicates little support
for lowland and mountain tapir reciprocal monophyly,
favoring a paraphyletic relationship. This suggests three
scenarios: first, divergence occurred over a relatively
short period of time and we are not able to capture the
actual relationship with our data [75]; second, mountain
tapirs speciated by paraphyly; and third, mountain tapirs
are an ecotype of lowland tapir, similar to what is
observed in reindeer [76]. In all cases, mountain and
lowland tapirs are sister taxa, suggesting a gradient
model of divergence.
The results are consistent with phylogeographic pat-

terns reported for other species in the same region [e.g.,
[71]], thus supporting the scenario that external factors
(e.g., climatic or geological) were significant in shaping
the history of taxa in this region [77]. However, external
mechanisms have been shown to be unnecessary to
explain genetic biogeographic structure, as the intrinsic
nature of the genealogical process alone can produce
significant spatial structure in genetic variation [78,79].
In this regard, future work should concentrate in testing
whether independent sections of the genome have simi-
lar biogeographic signatures to conclusively rule out

stochastic genealogical factors in determining observed
structure in genetic diversity [79].
The spatial distribution of the other cytb clades (clades

III and IV) suggests that the regions north and south of
the Amazon River are occupied largely by independent
lineages derived from those largely found in western
Amazonia. Two main dispersal scenarios can be sug-
gested to account for this pattern. First, assuming that
western Amazonia is the origin of dispersal, two sepa-
rate and independent migration events led to the coloni-
zation of the two regions. Alternatively, one lineage
colonized one area (e.g., clade III comes out of western
Amazonia to colonize north Amazonia), and subse-
quently originated a new wave of colonization that
occupied the second area across the Marajó Archipelago
(e.g., clade IV comes out of north Amazonia to colonize
south Amazonia, possibly via island hopping). In both
cases, and assuming extrinsic factors, a barrier to gene
flow is required to avoid admixture and thus dilution of
the observed genetic structure, as the geographic bound-
aries of the lineages’ distributions overlap along the
Amazon River. Although lowland tapirs are well known
swimmers, the river has been reported to be a barrier to
jaguars (Panthera onca), another similarly large and cap-
able swimmer [45]. Thus, it is plausible that the river is
the barrier predicted to account for the current geo-
graphic distribution of these two lineages.
Finally, clade IV, which includes all samples from

south of the Amazon region (Bolivia and Argentina), a
number of haplotypes found in Peru, haplotypes from
the Rio Negro (north of the Amazon), and one haplo-
type from Bolivia that is shared with French Guiana, has
an unusually wide geographic distribution when com-
pared to haplotypes of the other three clades. This
pattern is generally interpreted as resulting from rapid-
range expansion [1], a hypothesis that is supported by
the BSP, and Fu’s and Tajima’s tests. Although the geo-
graphic origin of this expansion remains an open ques-
tion, the expansion is estimated by BSP to have started
around the end of the last glacial maximum (LGM),
assuming that intra and interspecific rates of mutation
have not converged. This would suggest that the LGM
significantly reduced lowland tapir population size, simi-
larly to what has been reported for carnivores [71] and
ungulates [80]. Alternatively, the expansion also coin-
cides with the extinction of the Neotropical herbivore
megafauna, and thus a lessening of interspecific compe-
tition may have allowed lowland tapir populations to
expand into previously unavailable habitat.
The biogeographical history of the lowland tapir,

therefore, is not completely resolved. Future work
should explore the potential roles of western Amazonia,
the Amazon River, and the LGM in shaping lowland
tapir history and biogeography. Although external

Table 4 Inferred distribution of s values [119] calculated
under a complex biogeographic hypothesis when
compared to a null hypothesis of allopatric
differentiation

Generation* Effective Population Size (Ne) Inferred s (99% CI)

1,250 10,000 19.04 (14 − 23)

1,250 1,000,000 21.116 (15 −25)

375,000 10,000 14.93 (12 − 16)

375,000 1,000,000 17.84 (13 − 21)
a assuming a generation time of 8 years, which gives 10,000 yr BP and 3.1 My
BP for 1,250 and 375,000 generations, respectively.

S values are obtained from 1,000 trees simulated under a null model of
allopatric divergence (scenario b in Figure 4). Similar values were obtained for
scenario c in Figure 4. Trees were simulated under neutral coalescent with no
migration under varying generation times and effective population sizes.
Observed s = 4.
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factors may not have contributed entirely to the
observed structure [78,79], comparative phylogeography
through the observation of similar patterns across taxa
[71,80] provides an indication that more than stochastic
coalescent and sampling effects are contributing to the
distribution of genetic variation in this species.

Population diversity, structure and conservation
implications
Lowland tapirs are experiencing rapid decline in the Brazi-
lian Atlantic forest and in the Colombian and Venezuelan
llanos, and local extinctions have already been reported in
Argentina, and southern and eastern Brazil [13]. This
decline is attributed to habitat loss and subsistence hunt-
ing, and has prompted a “vulnerable” listing for the species
in the IUCN Red List [52] and the development of a con-
servation action plan [81]. However, a key element to any
successful action plans is a clear understanding of a spe-
cies’ population history, dynamics, and structure [82-84].
Even though we only examined one mtDNA locus, which
can limit our conclusions, our results begin to elucidate
such an understanding, providing valuable information for
tapir conservation. First, a recent comprehensive status
assessment based on habitat sustainability has assigned a
low probability of long-term survival for peripheral popu-
lations (i.e., Colombian and Venezuelan llanos and south-
ern dry forests groups) [13]. For these same populations,
we find lower levels of haplotypic diversity (Table 3) than
observed in other areas. This could be due to the reported
population decline, but it is also plausible that they have
lower genetic diversity because they are at the periphery of
the range [85]. In either case, such populations are most
likely to harbor unique diversity, as suggested by the
SAMOVA results, and thus be important in terms of con-
serving genetic diversity [79].
Second, we find little support for the use of ecoregions

in delimiting areas of lowland tapir conservation prior-
ity. South American ecoregions have been defined on
the basis of species richness, beta-diversity, and ende-
mism [86]. Tapirs inhabit a wide range of habitats, and
thus occur in a number of ecoregions, from savannas
and woodlands to lowland and lower montane forests,
and as a generalist herbivore they have a broad diet,
feeding opportunistically on a wide variety of plants and
fruits [87,88]. Studies on jaguars [45], crab-eating foxes
[57] and now lowland tapirs indicate that population
genetic structure of large neotropical mammals does not
necessarily mirror ecoregion boundaries, undermining
the utility of these regions to predict Evolutionary Sig-
nificant Units (ESUs) and Management Units (MUs)
[89] for large neotropical vertebrates. Instead, we
observed geographic overlap in four phylogenetic clades,
precluding delimitation of ESUs; and regions occupied
by several independent lineages, making MU status

inappropriate. Nevertheless, western Amazonia is an
important area for tapir conservation due to its lineage
endemism and representatives of other lineages.

Conclusion
In this study, we derive a number of novel hypotheses to
explain lowland tapir biogeography and history. The
strengths of these hypotheses include that they comple-
ment the fossil record, mirror patterns reported for sym-
patric taxa, and outline specific alternatives to explain the
observed spatial distribution of lineages. In particular, we
propose that mountain and lowland tapirs are native to
South America, and mountain tapirs may have speciated
from the lowland tapir by paraphyly along the steep envir-
onmental gradient provided by the Andean foothills in
western Amazonia. Differing from previous molecular
work but similar to the fossil record, we propose that
divergence among lowland tapirs occurred during the late
Quaternary, possibly as a consequence of periods of glacia-
tions resulting in significant changes to habitat via cooling,
desiccation, or dynamic changes to the river basins [70].
We also propose that independent dispersal events led to
the colonization of the regions north and south of the
Amazon river and these lineages have remained largely
separated due to the barrier that the river represents.
Finally, our data suggest that a population expansion
occurred after the LGM. However, a more thorough
examination based on nuclear genes and additional sam-
pling is required to obtain more accurate estimates of the
tMRCA and to test if the observed geographic structure is
indeed a result of extrinsic factors. More accurate esti-
mates will also put us in a better position to judge if geolo-
gical and climatic effects have shaped lowland tapir genetic
diversity, either in the late Pleistocene or earlier. Finally,
similar to other large Neotropical mammals, the lowland
tapir exhibits low levels of genetic structuring at the conti-
nental scale. From a conservation perspective, our data
questions the utility of ecogeographic regions in establish-
ing conservation priorities. Instead, we see western Ama-
zonia and periphery populations emerge as an important
harbors of both older and younger lineages, and poten-
tially unique diversity respectively. Further studies across
species and habitats at large spatial scales may assist in
identifying evolutionary regions across taxa that may be
better suited for conservation planning in the Neotropics.

Methods
Sampling and DNA sequencing
Genomic DNA was extracted with a standard phenol-
chloroform protocol [90] from 12 hair and 33 tissue
from animals killed by hunters or captured for ecologi-
cal studies across the lowland tapirs’ distribution includ-
ing Colombia, Venezuela, Brazil, Ecuador, Peru, French
Guiana, Bolivia and Argentina. In addition, we included
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three hair samples of mountain tapir (T. pinchaque)
from Colombia (Figure 1, Table 1).
Two overlapping fragments of the target sequence

cytb were amplified by polymerase chain reaction (PCR)
using the primers L7 - CB2 and CB1 - H6. H6 and
L7 were designed for Perissodactyls [91], and CB1
(5′-GCCCTTATCCTCTCTAGTTTG-3′) and CB2
(5′-AATCGGAGGACAACCAGTTG-3′) were designed
for this study. Amplification proceeded for 30 cycles of
94°C for 0.5 min, 52°C for 1 min, and 72°C for 1 min.
Amplified products were 1,079 bp for L7/CB2 and
313 bp for CB1/H6; both strands were directly sequenced
using the PCR primers. Sequence alignments were
obtained using MEGA 4.0 [92] and manually checked.
Both nucleotide and amino acid sequences were checked
for irregularities that could indicate nuclear homologs
[93]. All new sequences were deposited in GenBank
(accession numbers GQ259910 to GQ259957). We chose
cytb because data resulting from genetic variability of
mitochondrial DNA are commonly used to study species’
natural history and dispersal patterns [44,45,57,94,95]
and are adequate markers to investigate Evolutionarily
Significant Units (ESUs) and Management units (MUs)
[96,97]. Because the mitochondrial genome is haploid
and maternally inherited, stochastic lineage sorting is
expected to progress more rapidly than for nuclear genes.
Thus, incomplete sorting is less of a concern for mito-
chondrial than for nuclear loci, making them ideal for
estimating species’ trees of closely related taxa [98] and
investigating budding speciation [99].

Phylogenetic analysis and divergence time estimates
Multiple approaches were used to estimate the phyloge-
netic relationships among the observed haplotypes. First,
we estimated the haplotype network using the full set of
sequences of Tapirus terrestris and T. pinchaque, using
Network 4.5.0. http://www.fluxus-engineering.com and
the Median Joining network algorithm [100].
To reconstruct the species gene tree, we used DNASP

5.1 [101] to identify all unique haplotypes in our sample.
The gene genealogy was inferred by maximum parsi-
mony and maximum likelihood approaches using the
implementations of PAUP [102] and RAxML, respec-
tively, of the CIPRES portal http://www.phylo.org/sub_-
sections/portal. We also generate a UPGMA tree using
$SC:MESQUITE $ESC: [103] based on pairwise
distances calculated using an F84 model of nucleotide
substitution [104] using haplotypes unique to each sam-
pling site. A strict consensus was used to obtain
the final topology across ≤100 recovered trees from each
method. Finally, we used a Bayesian coalescent
approach, implemented in BEAST 1.4.7 [105], using the
same parameters outlined below for estimating time of
divergence of lowland tapir clades. Estimates of the time

to the most recent common ancestors (tMRCA) for the
different clades were inferred with BEAST 1.4.7 using
an approach with calibration based on the age of fossil
records [64] and an approach based on independent
inferences of Tapiridae cytb mutation rates [63] in order
to accommodate recently debated issues about molecu-
lar dating of relatively recent phylogenetic splits [66-68].
In the first approach, cytb sequences from Malay tapir

(accession number: AF145734) and several Rhinocerotidae:
Dicerorhinus sumatrensis (AJ245723), Diceros bicornis
(X56283), Ceratotherium simum (Y07726), Rhinoceros son-
daicus (AJ245725), R. unicornis (X97336) were used as out-
groups. Using MRMODELTEST 2.2 [106] we determined
that the GTR model of nucleotide substitution with
gamma distributed rate variation among sites and nine rate
categories (GTR+Γ) was the most suitable nucleotide sub-
stitution model for our full sequence set. Instead of using a
fixed substitution rate, we imposed monophyly for each
species and set strong priors on the nodes corresponding
to the most recent common ancestors of Dicerotina and
Ceratomorpha. Specifically, we set the prior to a normal
distribution with mean (standard deviation) of 17.1 My BP
(± 2.5) and 46.7 My BP (± 3.7), respectively. These dates
are based on both fossil [107,108] and genetic evidence
[91]. The harmonic mean of the model likelihood, f(X/Mi),
corresponding to the stationary phase, was compared
between molecular clock strategies [109]: relaxed, constant,
uncorrelated lognormal, uncorrelated exponential, using
the 2LnB10 equation to calculate Bayesian factors (BF) in
TRACER 1.4.1 [110]. A BF > 10 provided a strong support
for a relaxed molecular clock. Two independent runs
(20,000,000 generations with the first 2,000,000 discarded
as burn-in and parameter values sampled every 100 gen-
erations) with a coalescent prior assuming population
exponential growth and a relaxed molecular clock with
uncorrelated branch evolutionary rates sampled from an
exponential distribution [111] were combined.
In the second approach, we did not use outgroups and

external calibration points, instead we set a uniform prior
on the substitution rate (0.015 - 0.035 substitutions/site/
million years), which encompasses the variation in sub-
stitution rate observed for cytb in Perissodactyls [54].
Additionally, we set the tree height prior to an exponential
distribution with mean of 2.5 and offset of 0.0014, which
means tree height can be anything from 14 Ky BP to
9.5 My BP, but puts larger weight on tree heights ≤3 My
BP. This prior effectively incorporates our uncertainty
about the origins of the extant South American tapir spe-
cies. An offset of 14 Ky BP is the minimum date for which
fossils of extant species have been unambiguously identi-
fied [15] and 9.5 My BP is the age of the first Tapirus fossil
in North America [8], however previous estimates suggest
that lowland and mountain tapir diverged soon after
entering South America in the late Pliocene [18]. As
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described above, we determined that the HYK+I model
was the most suitable nucleotide substitution model for
our 48 sequences; and using BF, we determined that the
sequences were behaving in accordance with a strict mole-
cular clock rather than a relaxed clock, and that a constant
population size prior had a better fit than an exponential
growth prior. For each model we sampled the posterior
distribution 40,000,000 times, logging every 1,000 steps for
a total of 40,000 data points, the first 10,000 data points
were discarded as burn-in.
In all cases, model results were visually inspected using

TRACER V 1.4.1 to ensure proper mixing of the MCMC
and that all parameters had ESS values above 1,000. The
final tree for each approach, including divergence esti-
mates and their 95% highest posterior densities (HPD),
were computed in TREEANNOTATOR 1.4.5. Posterior
probability values were used to assess the degree of sup-
port of each node on the tree, and we reported the maxi-
mum sum of clade credibility tree [111].

Population genetic diversity and structure
Population structure was investigated according to three
hypothesized scenarios: (i) populations were defined
according to strongly supported clades identified in the
gene tree reconstruction; (ii) populations were defined
according to four wide geographic regions, that are par-
tially suggested by phylogenetic clades: Andean foothills,
western Amazonia, north Amazonia, and south Amazo-
nia including Bolivia and Argentina (Table 1); and (iii)
populations were defined according to ecogeographic
units (Table 1, [13]), which combine ecoregions [86]
and regional habitats used for identification of priority
areas for biodiversity conservation [53].
For each of these scenarios, DNASP 5.1 [101] and

ARLEQUIN 3.1 [112] were used to examine nucleotide
site polymorphism, haplotypic diversity (Hd), and
nucleotide diversity (π) of each group of samples.
Genetic variation was partitioned and fixation indices
were estimated using an analysis of molecular variance
(AMOVA), as implemented in ARLEQUIN. Pairwise
FCT significance tests were also calculated using
ARLEQUIN.

Demographic history
Two approaches were used to examine the historical pat-
terns of population growth in the lowland tapir. Under the
assumption of neutrality, deviations in Tajima’s D [113]
and Fu’s Fs [114] were used to test for a recent population
expansion or bottleneck [115]. Second, Bayesian skyline
plots (BSP) [116] were used to visually inspect changes in
Neover time. BSPs were constructed in BEAST 1.4.7 [105]
using the same priors as described above plus eight fixed
stepwise changes in Ne. We sampled the posterior distri-
bution with an MCMC of 80,000,000 generations, logged

every 1,000 steps for a total of 80,000 data points, the first
20,000 were discarded as burn-in. The scaled effective
population size was converted to the effective population
size, Ne, assuming a generation time of 10 years [81] and
the mutation rate calculated in BEAST (section above).

Phylogeography
A spatial analysis of molecular variance, as implemented
in the program SAMOVA 1.0 [117], was used to define
partitions of sampling sites that are maximally differen-
tiated from each other without any a priori assumption
about population structure. The method is based on a
simulated annealing procedure that maximizes the pro-
portion of genetic variance that can be explained by dif-
ferences between groups of populations, assessed with
the among group genetic variation (FCT) coefficient as
estimated by AMOVA [118]. Analyses were based on
100 simulated annealing steps with number of groups
(K) increasing from 1 to 12, allowing us to identify the
clustering of samples that yielded the largest, and most
significant, FCT for a given K.
To further examine the biogeographic history and the

mechanisms involved in lowland tapir divergence, we
used MESQUITE 2.72 [103] to calculate Slatkin and
Maddison’s s [119] in the recovered gene tree and two
hypothetical scenarios, which are suggested by the haplo-
type network and the observed gene genealogy (Figure 4):
(i) a split between Andean foothills and lowland western
Amazonia (gradient hypothesis), followed by an eastward
and southern expansion event split into two fronts by the
Amazon River (river hypothesis); (ii) an eastward expan-
sion event split into two fronts by the Amazon River
(river barrier), and split between Andean foothills and
western Amazon plain (gradient). Both scenarios are
associated with a pattern of isolation-by-distance, but
differ in the relative timing of the events. To test the
significance of the observed s for the observed gene
genealogy under each of these hypotheses, we generated
null distributions for the test statistic by simulating
1,000 gene trees under a neutral coalescent process
without migration under a null hypothesis of allopatric
fragmentation and calculated s for each gene tree under
each of our alternative population tree hypotheses [120].
To reject the null hypothesis of allopatric fragmentation,
in which samples were grouped according to the geo-
graphic scenario described above, we should observe a
significantly smaller s between the recovered gene tree
and our hypotheses than between gene trees simulated
under an allopatric fragmentation and our hypotheses.
We chose the allopatric fragmentation scenario because
it is regarded as the principal mode of diversification in
vertebrates [49], and allows us to specifically test for a
refugia model of diversification, as these grouping reflect
putative Amazonia refugia [31]. Finally, as the coalescent
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process is dependent on the effective population size and
number of generations [121], we tested 10,000 years and
3,100,000 years to tMRCA, and Neof 10,000 and
1,000,000, for a total of four scenarios. Ten thousand
years and 3,100,000 years are tested because they refer to
the end of the last glacial maximum and to the emer-
gence of the Panama Isthmus, respectively. The effective
population sizes were chosen because they reflect our
uncertainty about tapir census population sizes [13], and
how they might translate into effective population sizes.
In addition, these values encompass the Ne estimate
based on BSP [116] by our inference of the mutation rate
obtained from BEAST across all four clades.
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